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Abstract

This study leverages Sentinel-2 multispectral satellite
image data to identify pineapple plantations in Costa Rica
using a Random Forest (RF) model. Given ground-truth
data for the years 2018-2019, we comparatively explore
the effectiveness of a Decision Tree classifier, RF classifier,
and Gradient-Boosting classifier on the task of pineapple
plantation identification across the entire country of Costa
Rica. We find that the RF model outperforms the others
in terms of overall accuracy and scalability. Then, we ap-
ply the optimized RF model to unlabeled satellite data from
2020-2023 to address the deficit in available agricultural
land-use mapping data for those years in Costa Rica. We
conclude the study with suggestions for further optimiza-
tions of our own model, and we consider the merits of more
advanced, state-of-the-art deep learning image segmenta-
tion models. Project page: https://github.com/
sagems/pineapple_classification.

1. Introduction
The task of image segmentation is a central focus of

modern computer vision research. While early image seg-
mentation was done using low-level image features, like
color and brightness values [19], advances in sensors that
can capture light outside of the visible spectrum have
changed the landscape of what is possible in pixel classi-
fication. Notably, the application of classification tools, like
tree-based machine learning models, to satellite imagery
has opened up the field of terrestrial remote sensing to fur-
ther investigations into human-environment interaction [1].

The availability of preprocessed, fine-scale resolution
imagery of the planet has increased substantially in recent
years [4]. Specifically, missions such as NASA’s Landsat
and the European Space Agency’s Sentinel satellites have
increased the amount of multi-spectral image data avail-
able for scientific use [7]. Applications of both tree-based
and deep learning models to perform segmentation tasks on
these images have been successful, particularly in projects
involving land-use/land-cover (LULC) classification [15].

This project expands upon applications of segmenta-
tion tools to classify pineapple plantations in Costa Rica.
Pineapple is a cornerstone agricultural product in the Costa
Rican economy [3], but currently no high quality dataset
exists mapping pineapple plantations across the country in
the past four years. Through collaboration with researchers
at Centro Natcional de Alta Tecnologı́a (CeNAT) in Costa
Rica and the lab of Erin Mordecai at Stanford Univer-
sity, we obtained labeled datasets showing pineapple plan-
tation distribution across the country for the years 2015-
2019. While those datasets are ground-truthed at around
99% accuracy, they are extremely labor intensive to cre-
ate, and the researchers at CeNAT are seeking less time
and resource-intensive methods of classifying the satellite
data for the years that do not currently have labeled datasets.
This project aims to fill that gap by identifying and deploy-
ing models to predict pineapple plantation distributions for
2020-2023 for future use by the CeNAT researchers.

The challenges of creating such datasets lie first in the
ability to obtain high quality, cloud-free images of the en-
tire country, a challenge that is particularly pertinent in the
subtropical climate of Costa Rica. Second, the selection
of indexes to extract as features for the model as well as
the choice of model itself presents a myriad of options, of
which there are many tenable combinations. The challenge
of selecting the correct model and features to most accu-
rately detect pineapple plantations based on their spectral
reflectance signatures is a central objective of this project.

Through in-depth analysis of relevant tree-based ma-
chine learning models in the literature [15], we ultimately
fit and employ a Random Forest (RF) model to classify un-
labeled satellite image data of Costa Rica at 30m resolu-
tion. Our model performs with about 88% accuracy out-
of-sample on the training data and is used to segment mul-
tispectral satellite images of the country for the past four
years, 2020-2023, which lack labeled datasets from CeNAT.

2. Related Work
Our work builds upon a foundation of computer vision

research on LULC classification [15]. The increasing avail-
ability of multispectral image data combined with advances
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in image segmentation has greatly expanded the landscape
of satellite-based LULC classification [1]. Satellite imagery
provides access to bands outside of the visible spectrum,
which allows for the extraction of indices like the Normal-
ized Difference Vegetation Index (NDVI) [2]. These in-
dices alongside the bands provide additional feature extrac-
tion capabilities beyond those traditionally seen in color im-
age segmentation. It follows that with increasingly complex
LULC data representation, application to machine learning
models proves even more fruitful, and examples abound.
For instance, in 2017, Kulkarni explored generalized crop
classification using K-Means based approaches [10]. In
2023, Tariq et al. mapped tobacco, wheat, barley, and gram
croplands with decision tree based models [16]. Moreover,
in 2024, Masolele et al. developed a deep learning frame-
work to investigate land use following deforestation across
the continent of Africa [12]. Each of these studies employed
remote sensing data in the training of their diverse segmen-
tation models, and they are but a few examples of the myr-
iad explorations into applying multispectral satellite image
segmentation to LULC classification.

Surveys have also been conducted to examine the effi-
cacy of various machine learning classification models to
multispectral satellite image segmentation problems in an
effort to determine which perform best. Talukdar et al. ap-
plied Random Forest (RF), Support Vector Machine (SVM),
and Artificial Neural Network (ANN) algorithms along-
side three other more complex models to the same LULC
task [15]. They found RF to be the most effective classifier
of the six, which aligned with conclusions found in their
literature review ranking RF and ANN classifiers as opti-
mal for LULC remote sensing tasks [15]. Our own research
supports such a ranking of models.

Across relevant work to multispectral satellite image
segmentation, tree based models consistently arise as reli-
able, effective classifiers for remote sensing tasks [8, 14–
18]. Tree based models extend decision tree estimators in
their implementation. Decision Trees (DT) themselves are
the most basic of such models, and they often prove the
most computationally efficient, as they do not require exten-
sive training time like certain deep learning classifiers, like
SVMs and ANNs [16]. An RF model, then, is a step up from
a DT since it is an ensemble learning method which builds
and combines multiple decision trees in its execution. For
multispectral satellite image segmentation tasks, RF mod-
els consistently achieve overall predictive accuracy ratings
in the upper 80th to lower 90th percentiles [8, 14–18].

Despite strong results achieved with tree based models,
research has expanded into different solution domains in re-
sponse to the ever prevalent task of segmenting remote sens-
ing data. Chief among them sits deep learning (DL). With
the recent advancements of DL methods within computer
vision, efforts have been made to expand their application to

segmentation of satellite imagery [20]. Yuan et al. conduct
a comprehensive review of these DL methods, highlighting
noteworthy DL models like the Fully-Convolutional Net-
work (FCN) and the U-Net [20]. These two models have
been employed extensively across remote sensing literature.
Maggiori et al. extend an FCN and apply it to open-source
geographic map data for dense classification problems [11].
Masolele et al., alternatively, employ the U-Net architec-
ture to assess LULC factors that contributed to deforestation
across 30 African countries [12]. These are only two exam-
ples of multitudes, but they represent an increasingly popu-
lar new line of exploration into multispectral satellite image
segmentation approaches. Although we recognize the rele-
vance of DL models to remote sensing segmentation tasks,
this work limits its scope to tree based models: specifically,
DT, RF, and Gradient-Boosting (GB) classifiers.

With regards to the data itself, this project builds off of
an existing CeNAT dataset [5, 9] that maps pineapple plan-
tations for 2015-2019. Although the data is highly accurate,
it was generated using an extremely resource-intensive pro-
cess of repeated hand-labeling and ground-truthing. Our
project aims to find a more reasonably scoped approach
for remotely classifying pineapple plantations, which relies
on CeNAT work for both data labels and visual checks of
model performance in combination with publicly available
Sentinel 2 multispectral satellite image data1.

3. Methodology

Our basic methodology mirrors similar work described
in the Related Work section of this report, specifically with
regards to training data collection and model development.
We select 2018 and 2019 as the years for which to col-
lect labeled data, as those are the earliest years for which
corresponding 10m resolution Sentinel 2 data exists for
Costa Rica. After initially selecting 7000 pixels labeled
as pineapple plantation and 7000 labeled as non-plantation
from across both years in the CeNAT data, we extract band
and feature data from the corresponding Sentinel images for
each pixel based on its year. During the process, certain dat-
apoints are pruned from the dataset due to various reasons.
The finalized dataset contains 10,636 datapoints, which we
use to train, test, and tune several models.

3.1. Training Dataset

Pixel values for the training dataset and the prediction
regions come from the European Space Agency’s Sentinel
2 10m resolution dataset, publicly available on the Google
Earth Engine data catalogue [6]. This project uses the
Level 2A dataset, which offers the highest quality data
since Level 2A data has been corrected for atmosphere re-

1https://developers.google.com/earth- engine/
datasets/catalog/COPERNICUS_S2_SR_HARMONIZED
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flectance and shadow detection. The selected pixels are cho-
sen based on labeled data from the CeNAT pineapple map-
ping project [5, 9], from which data was provided through
the Mordecai Lab at Stanford University, in conjunction
with Python support libraries defining the borders of Costa
Rica2. For each labeled pixel, the B2, B3, B4, B8, and B11
bands are extracted, which represent the Blue, Green, Red,
Near-Infrared, and Short Wave Infrared bands, respectively.
Python libraries which support geospatial raster data for-
mat, namely Rasterio3 and GDAL4, aided in this process.
Using those bands, the Normalized Difference Moisture
Index, Normalized Difference Water Index, Soil-Adjusted
Vegetation Index, and NDVI are extracted as additional fea-
tures for each pixel. Finally, we clean the training dataset
using the Pandas library5 and export to a readable format
(CSV) suitable for model development.

3.2. Model Development

Given the training data in CSV format, we load the data
points and separate features from class labels, denoting 0
as non-plantation area and 1 as plantation area. The mod-
els we will build and run are targeted at a per-pixel task,
and we follow the typical design of an 80-20 train-test split
across the 10,636 data points (pixels) spanning remote sens-
ing satellite imagery from the years 2018 and 2019. As
a result, our training set comprises 8,509 data points and
our testing set comprises 2,127 data points. We apply these
train-test sets to a Decision Tree (DT), Random Forest (RF),
and Gradient-Boosting (GB) model through the use of the
Scikit-learn Python library [13].

Training and testing adhere to the same flow for each
model. First, hyper-parameters are tuned via one of two
methods, to be described next. Then, the classifier is fit
to the training data. Next, probabilities for each obser-
vation classification are calculated to aid with subsequent
model analysis. Finally, the optimized model is fed the test-
ing data, predictions are made, and the results are analyzed
through a variety of metrics, including overall predictive ac-
curacy, precision, sensitivity, f1-score, and AUROC.

Model optimization follows two routes. For the first, we
explore tuning only the maximum depth parameter for each
tree-based model. To do so, each model is run with dif-
ferent max depth values, ranging from 1 to 20, and the re-
sulting overall accuracy is plotted for each value. For in-
stance, Figure 1 shows the plot corresponding to our op-
timal RF model. The optimal depth is returned from the
helper method and subsequently fed into the final classifier
definition. The second route entails more comprehensive

2https://developers.google.com/earth- engine/
datasets/catalog/FAO_GAUL_2015_level0

3https://rasterio.readthedocs.io/en/stable/
4https://gdal.org/index.html
5https://zenodo.org/records/10697587

Figure 1. Random Forest classifier depth tuning.

parameter tuning. As opposed to restricting tuning to the
max-depth parameter, we expand considerations to a num-
ber of other hyperparameters for each model and utilize
the Randomized Search Cross Validation method available
through Scikit-learn [13]. Max-depths in the same range are
considered for each model. For the DT, we also consider be-
tween 2 and 20 samples as the minimum required to split an
internal node and between 1 and 20 samples as the mini-
mum required to be at a leaf node. For RF, we also consider
between 50 and 500 trees used in the ensemble method; ei-
ther square-root two, log two, or no limits on the number
of features to consider when looking for the best split; and
between the same ranges as those for the DT when consid-
ering the minimum number of samples required to split an
internal node and/or be at a leaf node. Finally, for GB, we
also consider between 50 and 500 trees used in the ensemble
method and a learning rate of either 0.01, 0.1, 0.2, or 0.3.
Due to reasons that will be expanded upon in the Results
section of this report, we use the initial, solely max-depth
tuned RF model for our final predictive model.

3.3. Prediction Mapping

After an in-depth analysis of model performance on the
training data, we select the final depth-tuned RF model to
use for prediction on the unlabeled data for the years 2020-
2023. We download raster data for the entire country of
Costa Rica for each year from the same Sentinel dataset
used for the construction of the training set, but we are lim-
ited to 30m resolution due to the compute resources avail-
able. The same bands and indices as used in the training set
are extracted across the region for each raster. The model
then makes predictions for each pixel in the rasters, generat-
ing a final map of predictions for each year. The final result
is a 30m resolution prediction map of pineapple plantations
for each of the years 2020-2023.
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Figure 2. Predictive plantation mapping from the years 2020-2023. Given the ground-truth plantation mapping (left) for a region in
Costa Rica in 2019, we apply unlabeled data from the years 2020-2023 to our RF model to produce predictive mappings of pineapple
plantations in the same region, where the white pixels represent new classifications that were not labeled in the original data.

Model Runtime Overall Accuracy

Decision Tree 12s 85.3%
Random Forest 4m18s 87.9%
Gradient-Boosting 21m6s 87.5%

Table 1. Max-depth hyperparameter tuning.

Model Runtime Overall Accuracy

Decision Tree 7s 86.2%
Random Forest 12m22s 88.1%
Gradient-Boosting 45m44s 87.4%

Table 2. Generalized hyperparameter tuning.

Model Acc. Precision Sensitivity F1-Score AUC

DT 85.096 85.093 85.096 85.081 0.91
RF 87.917 87.931 87.917 87.900 0.95
GB 87.635 87.645 87.635 87.619 0.95

Table 3. Detailed depth-tuned model results.

4. Results

As evaluation metrics for the final models, we consider
overall accuracy, precision, sensitivity, f1-score, and AU-
ROC. Tables 1 and 2 compare tuning approach runtimes and
their resultant optimal model accuracies.

4.1. Quantitative Analysis

Table 3 presents several evaluation metrics for DT, RF,
and GB models evaluated at their optimal maximum depth.
RF outperforms DT by a clear margin on all metrics, though
its performance in comparison to GB presents a much
tighter race. The AUROC stats provided in the rightmost
column of Table 3 offer an additional quantitative perspec-
tive on each model’s performance. Once again, DT boasts
the weakest performance with an AUC of 0.91, whereas RF
and GB are tied at an AUC of 0.95. Please see the Appendix
for plots of the ROC curves for each model.

Where RF clearly outperforms GB is in its tuning time.
Across both approaches, RF completes its tuning execution
between 4-5 times faster than GB. Although both models
achieve comparable results, we note that our experiments
are run on a small number of nine features and are limited
to a dataset of roughly 10,000 points. Given more complex
data and in much larger magnitudes, our RF model would
scale more optimally than a GB model in terms of tuning
time without sacrificing on performance. For this reason,
we selected the RF model as the final model with which to
make our predictions on the unlabeled data from Costa Rica
for the years 2020, 2021, 2022, and 2023.

4.2. Qualitative Analysis

We observe that the predictions for 2020-2023 match
closely on the map with the predictions from 2019, while
also showing expansion of the plantations over the span of
the subsequent years. Figure 2 offers an example a particu-
lar region and demonstrated plantation growth over the past
four years. This provides visual confirmation that the mod-
els are correctly mapping the plantations. Visually, we also
observe that the models clearly misclassify areas of rivers,
roads, and clouds as plantations (see Appendix), and also
struggle to classify urban areas as non-plantation areas.

5. Conclusion

This project succeeds in its goals of building a training
dataset from the 2018 and 2019 CeNAT labels, and in us-
ing that training data to build and test multiple tree based
models for satellite image segmentation for pineapple plan-
tations in Costa Rica. We select a final RF model, demon-
strate its efficacy on the training data, tune its hyperparme-
ters, and successfully deploy it on the unclassified satel-
lite images of Costa Rica for 2020-2023. Ultimately, the
predictions are visually confirmed to mirror the predictions
from 2019, and they also show the plantations growing over
time. On a country-wide scale, the model struggles with
misclassification of roads, rivers, urban areas, and clouds,
but in localized regions it appears to very accurately map
those areas, although this conclusion is based off of observ-
ing the 2019 maps and not based on ground truthing of the
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2020-2023 predictions. We conclude that our random for-
est model was able to construct datasets for 2020-2023 at
a 30m resolution that are useful to the CeNAT researchers
on a local scale and that further filtering of the data to re-
duce noise and misclassification of specific features would
increase the usability of the dataset on a country-wide scale.

5.1. Limitations and Future Work

From the data perspective, this project is limited by the
availability of cloudless images of the entire country of
Costa Rica. Available compute resources is also a limit-
ing factor which restricted the prediction maps to only 30m
resolution, which corresponded to roughly 53 million pix-
els per year to classify. Future work includes reducing noise
noise in the dataset by filtering out pixels that are isolated
and not a part of a larger plantation area, as those are most
likely misclassified as well as increasing the resolution of
the predictions to 10m resolution. The training dataset can
also be augmented with more labeled roads, urban areas,
and rivers to prevent misclassification of those areas.

6. Contributions
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members. Sage took the lead with data retrieval, prepro-
cessing, conversion to a readable format, application to fi-
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Scikit-learn: Machine learning in python. J. Mach. Learn.
Res., 12(85):28252830, 2011. 3

[14] Charlotte Pelletier, Silvia Valero, Jordi Inglada, Nicolas
Champion, and Gérard Dedieu. Assessing the robustness of
random forests to map land cover with high resolution satel-
lite image time series over large areas. Remote Sens. Envi-
ron., 187:156–168, 2016. 2

[15] Swapan Talukdar, Pankaj Singha, Susanta Mahato, Shahfa-
had, Swades Pal, Yuei-An Liou, and Atiqur Rahman. Land-

5



use land-cover classification by machine learning classifiers
for satellite observations—a review. Remote Sens., 12(1135),
2020. 1, 2

[16] Aqil Tariq, Jianguo Yan, Alexandre S Gagnon,
Mobushir Riaz Khan, and Faisal Mumtaz. Mapping of
cropland, cropping patterns and crop types by combining
optical remote sensing images with decision tree classifier
and random forest. Geospat. Inf. Sci., 26(3):302–320, 2023.
2

[17] Francesco Vuolo, Martin Neuwirth, Markus Immitzer,
Clement Atzberger, and Wai-Tim Ng. How much does multi-
temporal sentinel-2 data improve crop type t classification?
Int. J. Appl. Earth Obs. Geoinformation, 72:122–130, 2018.
2

[18] Ahmed Mohamed Youssef, Hamid Reza Pourghasemi,
Zohre Sadat Pourtaghi, and Mohamed M Al-Katheeri. Land-
slide susceptibility mapping using random forest, boosted re-
gression tree, classification and regression tree, and general
linear models and comparison of their performance at wadi
tayyah basin, asir region, saudi arabia. Landslides, 13:839–
856, 2016. 2

[19] Ying Yu, Chunping Wang, Qiang Fu, Renke Kou, Fuyu
Huang, Boxiong Yang, Tingting Yang, and Mingliang Gao.
Techniques and challenges of image segmentation: A review.
Electronics, 12:1199, 2023. 1

[20] Xiaohui Yuan, Jianfang Shi, and Lichuan Gu. A review of
deep learning methods for semantic segmentation of remote
sensing imagery. Expert Syst. Appl., 169, 2021. 2

Appendix

A. Github Repository
Project page: https://github.com/sagems/

pineapple_classification.

B. Additional Figures

Figure 3. ROC curves for each model.

Figure 4. Clouds, river, and roads misclassified by final model.
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